Abstract

Atomistic aspects of the structural organization, dynamics, and functioning of hydrated lipid bilayers-model cell membranes-are primarily governed by the fine balance of intermolecular interactions between all constituents of these systems. Besides the hydrophobic effect, which shapes the overall skeleton of lipid membranes, a very important contribution to their behavior is made by hydrogen bonds (H-bonds) between lipid head groups. The latter determine crucial phenomena in cell membranes, such as dynamic ultrananodomain organization, hydration, and fine-tuning of microscopic physicochemical properties that allow the membrane to adapt quickly when binding/insertion external agents (proteins, etc.). The characteristics of such H-bonds (strength, spatial localization, etc.) dramatically depend on the local polarity properties of the lipid-water environment. In this work, we calculated free energies of H-bonded complexes between typical donor (NH3+, NH, OH) and acceptor (C═O, OH, COO-, COOH) groups of lipids in vacuo and in a set of explicit solvents with dielectric constants (ε) from 1 to 78.3, which mimic membrane environment at different depths. This was done using Monte Carlo simulations and an assessment of the corresponding potential of mean force profiles. The strongest H-bonded complexes were observed in the nonpolar environment, and their strength increased sharply with decreasing ε below 17. When ε changed, the largest free energy gain (>10.8 kcal/mol) was observed for pairs of acceptors C═O and O(H) with donor NH3+. The complexation of the same acceptors with NH donor in this range of ε values was rather less sensitive to the environmental polarity, by ∼1.5 kcal/mol. Dielectric-dependent interactions of polar lipid groups with water were evaluated as well. The results explain the delicate balance that determines the unique pattern of H-bonds for a particular lipid bilayer. Understanding the factors that regulate the propensity for H-bonding in lipid bilayers provides a fundamental basis for the rational design of new membrane nano objects with predefined properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.