Abstract

The hairpin probe is a well known technique for measuring local electron density in low temperature plasmas. In reactive plasmas, the probe characteristics are affected by surface sputtering, contamination, and secondary electron emission. At higher densities, the plasma absorbs the entire electromagnetic energy of hairpin and hence limits the density measurements. These issues can be resolved by covering the hairpin surface with a thin layer of dielectric. In this letter, the dielectric contribution to the probe characteristics is incorporated in a theory which is experimentally verified. The dielectric covering improves the performance of probe and also allows the hairpin tip to survive in reactive plasma where classical electrical probes are easily damaged.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.