Abstract

The effective dielectric constant of porous ultra low- k dielectrics is simulated by applying the fractal geometry and Monte Carlo technique in this work. Based on the fractal character of pore size distribution in porous media, the probability models for pore diameter and for effective dielectric constant are derived. The proposed model for the effective dielectric constant is expressed as a function of the dielectric coefficient of base medium and the volume fractions of pores and base medium, fractal dimension for pores, the pore size, as well as random number. The Monte Carlo simulations combined with the fractal geometry are performed. The predictions by the present simulations are shown in good accord with the available experimental data. The proposed technique may have the potential in analyzing other properties such as electrical conductivity and thermal conductivity in porous ultra low- k dielectrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.