Abstract

We report here a microscopic tight-binding theoretical study of the dynamic dielectric response of graphene-on-polarizable substrate with impurity. The Hamiltonian consists of first, second and third nearest-neighbour electron hopping interactions besides doping and substrate-induced effects on graphene. We have introduced electron–electron correlation effect at A and B sublattices of graphene which is considered within Hartree–Fock mean-field approximation. The electron occupancies at both sublattices are calculated and solved self-consistently and numerically for both up- and down-spin orientations. The polarization function appearing in the dielectric function is a two-particle Green’s function which is calculated by using Zubarev’s Green’s function technique. The temperature and optical frequency-dependent dielectric function is evaluated and compared with experimental data by varying Coulomb correlation energy, substrate-induced gap and impurity concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.