Abstract

Dielectric properties of poly(vinylidene fluoride)-grafted-BaTiO3 (PVDF-g-BT) core-shell structured nanocomposites obtained from Reversible Addition Fragmentation chain Transfer (RAFT) polymerization of VDF were investigated by Broadband Dielectric Spectroscopy (BDS). The dielectric constant increased along with the BT content, about +50% by addition of 15 vol% of BT, which was around 40% more than expected from predictions using the usual dielectric modeling methods for composite materials, to be ascribed to the effect of the interfacial core-shell structure. The known dielectric relaxations for PVDF were observed for the neat polymer as well as for its nanocomposites, not affected by the presence of nanoparticles. A relaxation process at higher temperatures was found, due to interfacial polarization at the amorphous-crystalline interface, due to the high crystallinity of materials produced by RAFT. Isochronal BDS spectra were exploited to detect the primary relaxation of the amorphous fraction. Thermal analysis demonstrated a very broad endotherm at temperatures much lower than the usual melting peaks, possibly due to the ungrafted fraction of the polymer that is more easily removable by repeated washing of the pristine material with acetone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.