Abstract

The measured capacitance and conductance–voltage (C&G/ω–V) data between 1 and 200 kHz of Al/(BSA-doped-PANI)/p-InP structure were examined to uncover real and imaginary components of complex permittivity (e* = e′ − je″), loss tangent (tanδ), complex electric modulus (M* = M′ + jM″), and electrical conductivity (σ). It was uncovered that dielectric constant (e′), dielectric loss (e″), tanδ, real and imaginary components (M′ and M″) show a big dispersive behavior at low frequencies due to the oriental and the interfacial polarizations, as well as the surface states (Nss) and the BSA doped-PANI interlayer. Such behavior in e′, e″, and tanδ, behavior with frequency was also explained by Maxwell–Wagner relaxation. The values of σ are almost constant at lower-intermediate frequencies, but they start increase at high frequencies which are corresponding to the dc and ac conductivity, respectively. The values of M′ and M″ are lower in the low frequency zone and they become increase with increasing frequency at accumulation region due to the short-range charge carriers mobility. Ultimately, dielectric parameters and electric modulus alteration with frequency is the consequence of surface states and relaxation phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.