Abstract
We precisely measured the dielectric breakdown strength of SrTiO3, CaTiO3, and CaZrO3 ceramics as a function of temperature, and revealed the dielectric breakdown mechanism of the ceramics. For the dielectric breakdown test, ceramics specimens with a lot of round-bottom holes were prepared. Using the specimens, the breakdown positions were stabilized and a reliability of breakdown strength was improved as well as the measurement efficiency. As a result of the dielectric breakdown tests, it was found that the dielectric breakdown strength decreased with increasing permittivity at room temperature and the permittivity dependence of breakdown strength obeyed Griffith type energy release rate model. At high temperature above 100ºC, the dielectric breakdown mechanism of SrTiO3 and CaTiO3 ceramics was explained by an intrinsic breakdown model. In contrast, an intrinsic dielectric breakdown of CaZrO3 ceramics didn't occur in the measurement temperature range up to 210ºC. To obtain a high dielectric breakdown strength at high temperature, the dielectric permittivity is required to be low to some extent and the defect concentration of oxygen vacancies should be minimized in the perovskite-structured oxide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.