Abstract

Axions are a popular dark matter candidate which are often searched for in experiments known as ``haloscopes" which exploit a putative axion-photon coupling. These experiments typically rely on Transverse Magnetic (TM) modes in resonant cavities to capture and detect photons generated via axion conversion. We present a study of a resonant cavity design for application in haloscope searches, of particular use in the push to higher mass axion searches (above $\sim$60$\,\mu$eV). In particular, we take advantage of azimuthally varying TM$_{m10}$ modes which, whilst typically insensitive to axions due to field non-uniformity, can be made axion-sensitive (and frequency tunable) through strategic placement of dielectric wedges, becoming a type of resonator known as a Dielectric Boosted Axion Sensitivity (DBAS) resonator. Results from finite-element modelling are presented, and compared with a simple proof-of-concept experiment. The results show a significant increase in axion sensitivity for these DBAS resonators over their empty cavity counterparts, and high potential for application in high mass axion searches when benchmarked against simpler, more traditional designs relying on fundamental TM modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.