Abstract
In this work, orthorhombic (α-BiNbO4) and triclinic bismuth niobate (β-BiNbO4) ceramics were prepared by a wet chemical route. The structure of the obtained powders was characterised by X-ray diffraction and the morphology by scanning electron microscopy. The dielectric measurements were performed in the radiofrequency region, at different temperatures, using the impedance spectroscopy technique. The α-BiNbO4 sample presented a temperature-dependent relaxation process, with the corresponding activation energy being calculated through the Arrhenius equation. The AC conductivity dependence on the frequency was in agreement with Jonscher’s universal power. The conduction mechanism in the α-BiNbO4 compound is governed by two processes, which can be ascribed to a hopping transport mechanism. The correlated barrier hopping model until 280 K and the non-overlapping small polaron tunnelling model above 280 K are the most suitable models to describe the conductivity of this sample. In the β-BiNbO4 compound, the motion of mobile charge carriers involves localised hopping between neighbouring sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.