Abstract

The dielectric relaxation behavior of Polyetheretherketone (PEEK) has been investigated by using thermally stimulated discharge current (TSDC) technique. The dependence of TSDC characteristics of PEEK on poling temperature (TP) [50–200 °C], poling field (EP) [200–500 kV/cm], storage time (tS) [2–120 hrs] and various thicknesses 25 μm, 50 μm and 75 μm have been investigated in the temperature range [60–230 °C]. The TSDC spectra shows a prominent maxima around glass transition temperature (Tg) i.e. at 143 °C named as α-peak and the other peak is observed around 200 °C named as β-peak. The α-dipolar relaxation is taking place because of the movement of ketone (>C = 0) dipoles linked to the main chain. The β-peak is attributed to the space charges. It is observed that the magnitude of α-peak increases with the increase in poling field. The peak current and area under the α-peaks are found to be diminished with the increase of storage time (ts) for electrets. The amplitude of α-peak decreases with the increase in thickness. The activation energies for PEEK sample at different conditions in the present work are found to be 0.38 eV–1.70 eV. The values of activation energy (U) and pre-exponential factor (τo) for α- relaxation are determined using Bucci plot method and support the nature of the relaxations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call