Abstract

The role of the Coulomb forces between the counterions on the surface of polyelectrolytes on the dielectric response is analyzed. An estimate of the maximum dielectric increment (as a function of the number of counterions) is found as a function of the molecular length. The minimum-energy configuration of the counterions on a cylinder is found to be a double helix, suggesting the fundamental importance of electrostatic interactions in determining structure. Solutions of the dynamical equations for a few counterions indicate that a single mode dominates the relaxation which is enhanced by the inter-ion repulsions. A lower bound is found for this mode based on analysis of the system response for short lengths. Sum rules for the rates and amplitudes of the dipolar correlation function are derived and lead to an upper bound for the rate of the dominant mode. These bounds approach one another for the parameters characteristic of restriction fragments of DNA. This permits a prediction of the magnitude and time scale of the dielectric response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.