Abstract

The equilibrium Kerr effect of a system of mobile charges constrained to the surface of biomacromolecules is calculated. Cylindrical and spherical geometries are considered. For the cylinder we determine the anisotropy of electric polarizability as a function of length, temperature, and number of charged species in the low-field regime, and the fraction of the maximum induced dipole in the field direction for higher electric fields. The results are compared to experimental data for DNA oligomers taken from the literature. With spherical geometry we calculate the fractional induced dipole moment as a function of electric field strength and from this deduce the orientation function. The field dependence of the orientation function is compared to experimental data in the literature for bovine disk membrane vesicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call