Abstract

A three-phase composite film was produced by inserting multi-walled carbon nanotubes (MWCNTs) and BaTiO3 nanoparticles into polyimide (PI). The combination of in-situ polymerization and water-based preparation involved in the experiment ensured fillers’ homogeneous dispersion in the matrix, which led to flexible shape of the composite films. The dielectric properties of composite films as a function of the frequency and the volume fraction of MWCNTs were studied. Such composite film displayed a high dielectric constant (314.07), low dielectric loss and excellent flexibility at 100[Formula: see text]Hz in the neighborhood of percolation threshold (9.02 vol%) owing to the special microcapacitor structure. The experimental results were highly consistent with the power law of percolation theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call