Abstract
Charged closed-cell polymer foams have been found to be highly sensitive piezoelectric materials. Charging is shown to arise from dielectric barrier microdischarges within the voids of the cellular polymer. Above the threshold voltage for breakdown in the voids, the microdischarges are evidenced by light emission from the polymer, as well as by displacement-voltage hysteresis loops. Monitoring light emission during breakdown is shown to provide a quick check for the suitability of foams for piezoelectric applications. Additionally it allows for the visualization of micropores in foams in a nondestructive way. The piezoelectric response of the foam can be switched by applying dc-voltage pulses of alternating polarity above the breakdown threshold, thereby showing the feasibility of patterning the piezoelectric properties within the film plane. Although piezoelectric foams are nonferroelectric, the experiments prove similarities to ferroelectric materials with respect to hysteresis behavior, as well as a threshold (coercive) field for switching of the polarization and piezoelectricity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.