Abstract

We investigated the use of dielectric-barrier-discharge plasma actuators as vortex generators for flow separation control applications. Plasma actuators were placed at a yaw angle to the oncoming flow, so that they produced a spanwise wall jet. Through interaction with the oncoming boundary layer, this created a streamwise longitudinal vortex. In this experimental investigation, the effect of yaw angle, actuator length and plasma-induced velocity ratio was studied. Particular attention was given to the vortex formation mechanism and its development downstream. The DBD plasma actuators were then applied in the form of co-rotating and counter-rotating vortex arrays to control flow separation over a trailing-edge ramp. It was found that the vortex generators were successful in reducing the separation region, even at plasma-to-free-stream velocity ratios of less than 10%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.