Abstract

The effect of the segmented electrode structure of the dielectric barrier discharge reactor on toluene decomposition adsorbed on bare-zeolite surface was investigated. The three types electrodes, divided into 1, 2 and 4 parts, respectively, but equal in their total length, were introduced to increase decomposition efficiency without any assistance of catalyst. The experimental results showed that introducing the segmented electrode could improve both the plasma characteristics and the performance of toluene decomposition. As the number of segments of electrodes increased, the plasma current increased so that the specific input energy density could be increased at the same applied voltage. It led to the increase of the ozone generation which is expected to increase also the amount of ozone consumption because ozone has a significant effect on the decomposition of toluene. However, the increase of ozone consumption was not proportional to the decomposition of toluene. Nevertheless, the mineralization and the CO2 selectivity increased as the plasma current increased. Herein, the decomposition of toluene is considered to occur by reaction path affected by the increased plasma current as well as ozone. In conclusion, the mechanisms for toluene decomposition in the dielectric barrier discharge with introducing the segmented electrode are suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.