Abstract

A novel dielectric barrier discharge source with a controllable discharge distribution has been designed for operation in atmospheric air. A predictable distribution has been achieved through the design of the powered electrode and the dielectric barrier. Optical emission tomography is used to study the discharge distribution. The method and its applicability in studies of non-symmetric plasmas are discussed in the paper. The results show that a desired discharge distribution may be achieved through the manipulation of the electric field amplification by the powered electrode and it is found that the discharge shape resembles the field imposed at the powered electrode only. Together with the flexibility of the plasma source design, this can prove highly advantageous for the treatment of irregularly shaped surfaces in plasma medicine and plasma surface processing at atmospheric pressure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.