Abstract

The phase diagram of H2O is extremely complex, in particular, it is believed that a second critical point exists deep below the supercooled water (SCW) region where two liquids of different densities coexist. The problem however, is that SCW freezes at temperatures just above this hypothesized liquid-liquid critical point (LLCP) so direct experimental verification of its existence has yet to be realized. Here, we report two anomalies in the complex dielectric constant during warming in the form of a peak anomaly near Tp=203 K and a sharp minimum near Tm=212 K from ice samples prepared from SCW under hydrostatic pressures up to 760 MPa. The same features were observed about 4 K higher in heavy ice. Tp is believed to be associated to the nucleation process of metastable cubic ice Ic and Tm the transitioning of ice Ic to either ices Ih or II depending on pressure. Given that Tp and Tm are nearly isothermal and present up to at least 620 MPa and ending as a critical point near 33-50 MPa, it is deduced that two types of SCW with different density concentrations exists which affects the surface energy of ice Ic nuclei in the "no man's land" region of the phase diagram. Our results are consistent with the LLCP theory and suggest that a metastable critical point exists in the region of 33-50 MPa and Tc > 212 K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.