Abstract
Stimuli-responsive soft materials are becoming increasingly important in a wide range of contemporary technologies, and methods by which to promote thermal stimulation remotely are of considerable interest for controllable device deployment, particularly in inaccessible environments such as outer space. Until now, remote thermal stimulation of responsive polymers has relied extensively on the use of nanocomposites wherein embedded nanoparticles/structures are selectively targeted for heating purposes. In this study, an alternative remote-heating mechanism demonstrates that the dielectric and resistive thermal losses introduced upon application of an alternating current generate sufficient heat to raise the temperature of a neat polyimide by over 70°C within ≈10s. Thermal imaging is used here to measure current-induced temperature changes of polymeric media, and a proposed analytical model yields predictions that compare reasonably well with experimental data, confirming that such remote heating is viable. Conditions permitting a shape-memory polymer possessing a melting transition and susceptible to dielectric actuation to achieve continuous electrostrain-temperature cycling are identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.