Abstract

The electrical properties of three-phase composite materials (CMs) graphite nanoplatelets/carbonyl iron/epoxy resin (GNP/Fe/epoxy) with 30 wt% of Fe and (1–5) wt% of GNP were studied by measuring DC conductivity and AC impedance spectra in the frequency range up to 2 MHz. The microwave shielding properties were measured in the frequency range of electromagnetic radiation (EMR) 1–67 GHz. The Nyquist diagrams derived from measured impedance–frequency spectra for GNP/Fe/epoxy CMs were considered within the equivalent circuit model. The significant increase of permittivity was observed for three-phase CMs with the increase of GNP content compared to two-phase GNP/epoxy CMs. For example, the real part of permittivity $$\varepsilon^{\prime}$$ = 700–300 and imaginary part $$\varepsilon^{\prime\prime}$$ = 4 × 105–300 for ternary 5 GNP/Fe/epoxy composite in the frequency range 1 kHz–2 MHz. The observed significant increase of AC conductivity for three-phase composites proved the synergetic role of Fe particles in dispersing of GNP filler in epoxy matrix and formation of micro-capacitor network (for low GNP content) as well as the conductive network for higher GNP content. The observed sufficient increase of EMR shielding ( $${\text{SE}}_{T}$$ in dB) beginning from 30–35 GHz for GNP content of 3–5 wt% correlates with DC electrical conductivity increase. The increase of the sample thickness d leads to the increase of shielding efficiency mainly due to the increase of EMR absorption $${\text{SE}}_{A}$$ term.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call