Abstract

This study focuses on the development and characterization of Carbon-based Polylactide (PLA) composites for 3D printer filaments. The aim is to enhance the electrical and mechanical properties of PLA by incorporating recovered carbon black (RCB) in different mesh sizes (500, 1000, 1500, and 2000 mesh). Electrical impedance spectroscopy and dielectric constant measurements were performed to investigate the electrical properties of the composites. Results showed that the addition of RCB increased the dielectric constant, with values ranging from 2.5 to 7.1, indicating improved electrical performance. Scanning electron microscopy (SEM) analysis revealed the dispersion of carbon particles within the composites, enhancing their electrical conductivity. The effect of RCB particle size on electrical properties was also explored, with smaller particle sizes (2000 mesh) resulting in the highest conductivity of 6.2 S/m. Tensile testing demonstrated that the addition of RCB increases the tensile strength of PLA, with values ranging from 28.6 MPa to 47.2 MPa, and the elastic modulus, ranging from 832 MPa to 1.56 GPa, depending on the mesh size. The optimal combination of RCB content and mesh size resulted in a composite with a tensile strength of 43.8 MPa. Overall, this research provides insights into the development of Carbon-based PLA composites with improved electrical and mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.