Abstract

The rapid evolution in electronic equipment has created a demand for advanced devices that are flexible, thin, and light in weight. This demand is driving the development of a core technology for flexible and stretchable electronic devices. To produce wearable computers, we need to fabricate functional membranes that contain passive devices, such as capacitors and resistors, on resin sheets at low temperatures. These sheets can then serve as mounting boards for various electronic devices. By improving the technique for room-temperature aerosol-type nanoparticle deposition of a ceramic material, we have established a technology for forming a dielectric inorganic BaTiO3 film with an excellent degree of crystallinity and favorable electric properties for use in the production of flexible and stretchable electronic devices on a polyimide sheet. By this method of forming a homogeneous nanoparticle structure inside a film, we produced a capacitor film with a dielectric constant of 200 on a polyimide sheet at room temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call