Abstract

The combination of nanoparticles with high relative permittivity and polymers with high dielectric strength offers a potential to obtain processable nanocomposites with high dielectric performance. In this work, polyvinylidene fluoride (PVDF)-barium titanate (BT) nanocomposites were prepared by spin-coating technique. The surface of BT nanoparticles was treated by titanate coupling agent NDZ101. The dielectric and energy storage properties of the system were studied as a function of BT content. The experimental results showed that the dielectric constant of the nanocomposites increased with the increase of BT content. Although pure PVDF material has the strongest dielectric breakdown strength, the discharged energy storage density Ue of the nanocomposites was greatly improved from 2.8 J/cm3 in pure PVDF film to 6.2 J/cm3 in PVDF/20 wt% BT film; due to larger polarization of the nanocomposite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call