Abstract

Ba0.6Sr0.4TiO3 based glass–ceramics were prepared by sol–gel process. Influences of B–Si–O glass content on the microstructure, dielectric, and energy storage properties of the BST based glass–ceramics have been investigated. Perovskite barium strontium titanate phase was found at annealing temperature 800 °C. A secondary phase Ba2TiSi2O8 was detected and lowered by declining the mole ratio of element Si (from 50 to 25 mol%) in glass additive. Microstructural observation indicated that the microstructure homogeneity can be improved by glass addition till 2 mol%, while worsened by excessive glass concentrations. Due to relatively homogeneous microstructure, the maximum discharged energy density and breakdown strength were also obtained in samples with 2 mol% glass additive, which were found to be 0.553 J/cm3 and 43.2 kv/mm, respectively. Microscopic observation of the breakdown area was performed and the mechanical failure, including the formation and accumulation of micro-cracks during the dielectric breakdown process, was considered to be the main cause of dielectric breakdown. Results of the charging and discharging energy densities show that the BST based glass–ceramics prepared by sol–gel method has a potential for pulse power applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.