Abstract

Abstract A theory is developed which describes the linear, reversible, time-dependent response of a crystal containing point defects to stress or electric fields, respectively known as anelastic and dielectric relaxation. Such relaxation occurs because of the redistribution of the defects among sites which are initially equivalent, but which becomes inequivalent in the presence of the external field. The macroscopic behaviour of such a crystal is found to be describable in terms of the symmetry which can be assigned to the defect. This defect symmetry determines whether or not the crystal will undergo dielectric or anelastic relaxation and, if relaxation can occur, which specific coefficients of elastic compliance or electric susceptibility show the relaxation effect. The latter information, called the ‘selection rules’ tells, in effect, which combination of stress or electric field components is capable of redistributing the defects. Tables are given for these selection rules for all possible defect symm...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call