Abstract

AbstractHerein, Ti2CTx MXene‐Polyvinyl alcohol (PVA) nanocomposite films with different weight percent (wt%) of MXene loadings were successfully prepared using the facile solution casting method. The structural, morphological, optical, thermal, and tensile properties of the nanocomposite films were analyzed using FTIR, XRD, Raman, SEM, UV–Vis spectroscopy, TG‐DTA, mechanical tests, and so forth. The variation in dielectric constant, loss tangent, and AC conductivity of the nanocomposite films was analyzed in the range of 1 Hz to 10 MHz with the variation of temperature (30–150°C) and MXene concentrations (5–20 wt%) using impedance spectroscopy. The nanocomposite films showed a very high dielectric constant in the range of ~105 for lower frequency and very low dielectric loss in the range of 0–1 for higher frequency (100 kHz–10 MHz). The dielectric constant, loss tangent, and AC conductivity values increased at a certain temperature and further decreased with increase in temperature. The increase in filler concentration increased the values of these investigated electrical parameters but at a concentration of 20 wt%, the nanocomposite films reached the percolation limit, and hence a slight reduction in the dielectric properties was noticed. Moreover, the complex impedance spectroscopy studies of the nanocomposite films were also carried out and their corresponding circuit diagrams were fitted according to the obtained cole‐cole plots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.