Abstract

Predator and prey react to each other, adjusting their behavior to maximize their fitness and optimizing their food intake while keeping their predation risk as low as possible. In a pelagic environment, prey reduce their predation mortality by adopting a diel vertical migration (DVM) strategy, avoiding their predator during their peak performance by finding refuge in deep layers during daylight hours and feeding at the surface during the night. Due to the duality of the interaction between prey and predator, we used a game theory approach to investigate whether DVM can be a suitable strategy for the predator as well as the prey. We formulated three scenarios in plankton ecology in order to address this question. A novel finding is that mixed strategies emerge as optimal over a range of the parameter space, where part of the predator or prey population adopts a DVM while the rest adopt one or other “sit and wait” strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call