Abstract

BackgroundCowpea (Vigna unguiculata) is an important source of protein supply for animal and human nutrition. The major storage globulins VICILIN and LEGUMIN (LEG) are synthesized from several genes including LEGA, LEGB, LEGJ and CVC (CONVICILIN). The current hypothesis is that the plant circadian core clock genes are conserved in a wide array of species and that primary metabolism is to a large extent controlled by the plant circadian clock. Our aim was to investigate a possible link between gene expression of storage proteins and the circadian clock.ResultsWe identified cowpea orthologues of the core clock genes VunLHY, VunTOC1, VunGI and VunELF3, the protein storage genes VunLEG, VunLEGJ, and VunCVC as well as nine candidate reference genes used in RT-PCR. ELONGATION FACTOR 1-A (ELF1A) resulted the most suitable reference gene. The clock genes VunELF3, VunGI, VunTOC1 and VunLHY showed a rhythmic expression profile in leaves with a typical evening/night and morning/midday phased expression. The diel patterns were not completely robust and only VungGI and VungELF3 retained a rhythmic pattern under free running conditions of darkness. Under field conditions, rhythmicity and phasing apparently faded during early pod and seed development and was regained in ripening pods for VunTOC1 and VunLHY. Mature seeds showed a rhythmic expression of VunGI resembling leaf tissue under controlled growth chamber conditions. Comparing time windows during developmental stages we found that VunCVC and VunLEG were significantly down regulated during the night in mature pods as compared to intermediate ripe pods, while changes in seeds were non-significant due to high variance. The rhythmic expression under field conditions was lost under growth chamber conditions.ConclusionsThe core clock gene network is conserved in cowpea leaves showing a robust diel expression pattern except VunELF3 under growth chamber conditions. There appears to be a clock transcriptional reprogramming in pods and seeds compared to leaves. Storage protein deposition may be circadian regulated under field conditions but the strong environmental signals are not met under artificial growth conditions. Diel expression pattern in field conditions may result in better usage of energy for protein storage.

Highlights

  • Cowpea (Vigna unguiculata) is an important source of protein supply for animal and human nutrition

  • Length and width increased during the entire pod development, even so weight increases were more prominent during the second week after anthesis (Fig. 2)

  • We studied the expression of Vigna unguiculata GIGANTEA (VunGI), Vigna unguiculata TIMING OF CAB EXPRESSION1 (VunTOC1) and Vigna unguiculata LATE ELONGATED HYPOCOTYL (VunLHY) in mature pods and seeds under controlled conditions

Read more

Summary

Introduction

Cowpea (Vigna unguiculata) is an important source of protein supply for animal and human nutrition. Cowpea (Vigna unguiculata) is an important food source of African origin and was introduced to the Indian subcontinent approximately 2000–3500 years ago [1] It is used at all stages of growth from the green leaves, which are used like spinach, immature pods, green cowpeas or dry mature seeds [2]. Globulins constitute with 55–58%, the major seed proteins in cowpea followed by albumins, basic glutelins, acid glutelins and prolamins [3, 6]. This compositional characteristic is stable in a nutritional survey of seed protein types in high-yielding cowpea cultivars [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call