Abstract
Many fish naturally encounter a daily cycle of hypoxia, but it is unclear whether this exposure hardens hypoxia-intolerant fish to future hypoxia or leads to accumulated stress and death. The rainbow trout (Oncorhynchus mykiss) is a putatively hypoxia-sensitive species found in rivers and estuaries that may routinely experience hypoxic events. Trout were exposed to one of four 135 h treatments in a swim-tunnel respirometer: (1) air-saturated control (20.7 kPa PO2 ); (2) diel cycling O2 (20.7-4.2 kPa PO2 over 24 h); (3) acute hypoxia (130 h at 20.7 kPa PO2 followed by 5 h at 4.2 kPa PO2 ); and (4) the mean oxygen tension (12.4 kPa PO2 ) experienced by the diel cycled fish. Some responses were similar in diel O2 cycled and mean PO2 -treated fish, but overall, exposure to ecologically representative diel hypoxia cycles improved hypoxia tolerance. Diel hypoxia-induced protective responses included increased inducible HSP70 concentration and mean corpuscular hemoglobin concentration, as well as reduced plasma cortisol. Acclimation to diel hypoxia allowed metabolic rates to decline during hypoxia, reduced oxygen debt following subsequent exposures, and allowed fish to return to an anabolic phenotype. The data demonstrate that acute diel cycling hypoxia improves hypoxia tolerance in previously intolerant fish through the activation of cellular protective mechanisms and a reduction in metabolic O2 requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.