Abstract

ABSTRACTThe diel pattern of cell division, cell carbon, adenine nucleotides and vertical migration was determined for laboratory cultures of the photosynthetic marine dinoflagellate, Ceratium furca (Ehr.) Clap. & Lachm., entrained on an alternating 12:12 LD schedule at 20 C. Cell division was initiated during the latter portion of the dark period with ca. 30% of the population undergoing division. Cell C increased during the light period and exhibited a linear decrease with a loss of 33% during the dark period. ATP · cell−1 increased during the light period and decreased by ca. 40–50% during the dark period. The diel patterns of cell C and ATP tended to “buffer” the magnitude of the change in C:ATP ratios around an overall mean value of 89. There was no obvious trend in the concentration of [GTP + UTP] · cell−1 over the cell cycle. The cellular adenylate energy charge was maintained at values between 0.8 to 0.9 throughout the 24 h LD cycle, despite a ca. 40% decrease in total adenylates (AT= ATP + ADP + AMP) during the dark period on 12:12 LD, and over a 68% decrease in ATP during 42 h of continuous darkness. These data lend experimental support to the theory of cellular metabolic control by the adenine nucleotides. With lateral illumination on 12:12 LD cycles, the cells began to concentrate at the surface of the experimental tubes shortly before the lights were turned on, and at the bottom of the tubes shortly before the lights were extinguished. This pattern continued for 6 days in continuous darkness, suggesting that the vertical migration pattern is independent of a phototactic response and may be under the control of an endogenous rhythm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.