Abstract

The steady state extrusion process of a large, multi-cavity aluminum profile for high-speed train was simulated using the Arbitrary Lagrangian Eulerian (ALE) algorithm. The simulation result of the initial design shows that the material flow velocity in the bearing exit is non-uniform. Comparing the obtained extrudate front end of the simulation with the experimental results of the initial design, it is clear that the metal in thick-walled regions of the profiles in both results flows faster than that in the other regions of the profiles. Moreover, the distorted metal in the six inclined ribs shown in both results are very similar to each other. Aiming at a uniform flow velocity, four kinds of structure optimizations were proposed and simulated. The methods of resizing portholes, adding bosses, chamfering mandrels, and adjusting the length of the bearings can balance the local metal flow velocity effectively. Finally, a perfect simulation result with exit velocity difference of 18.7mm/s and little distortion was obtained. Through the effective prediction of flow velocity in the simulation extrusion, the qualified profiles with few trial and error extrusions were manufactured successfully. The case study demonstrates that the ALE method is a viable predictive tool for die design, and the approach is applicable to the extrusion of other alloys for any other extrudate shapes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.