Abstract

ABSTRACT The present work emphasizes the fabrication of a series of V-groove channels utilizing electrical discharge machining using a pointed tungsten tool electrode. The prepared textured surface is tested for the shape of V-groove channel, wetting behavior, and tribological aspect. A decrease in shape error of V-groove channel is observed as the peak current increases from 4 A to 10 A due to an increase in discharge energy which functions as the melting or vaporizing of machined materials. The water contact angle decreases from 61.3160 (untextured surface) to 49.5670 (sample 4) showing an increase in hydrophilic behavior for the samples having nearly a V-groove-shaped channel. Further, there is a decrease in COF value from 0.48 (untextured surface) to 0.23 (sample 4). The decreased COF value attributes to the formation of metallic bridges in the V-groove channel. The prime wear mechanism for an untextured surface is found to be ploughing whereas adhesion with ploughing is dominant for textured surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call