Abstract

Abstract The rare earth metal(III) chloride oxidoarsenates(III) with the composition RE 5Cl3[AsO3]4 (RE = La–Nd, Sm) could be synthesized via solid-state methods through the reaction of arsenic sesquioxide (As2O3) with the corresponding rare earth metal compounds (La2O3, CeO2 + metallic Ce, Pr6O11, Nd2O3 or metallic Sm) using several chloride-containing fluxing agents in evacuated silica glass ampoules. The compounds build up non-isotypic crystal structures in the monoclinic space groups C2/c for RE = La–Pr, and P2/c for RE = Nd and Sm. All rare earth metal(III) cations exhibit coordination numbers of eight. While (RE1)3+ and (RE2)3+ are only surrounded by oxygen atoms in the form of distorted square antiprisms or prisms, (RE3)3+ is coordinated square antiprismatically by four oxygen atoms and four chloride anions. Although the coordination polyhedra in both structures differ only marginally, their connection patterns show more pronounced differences. This regards especially the (RE)3+ cations and results from different site symmetries of the (Cl1)− anions. All As3+ lone-pair cations are coordinated by three oxygen atoms to form ψ1-tetrahedral [AsO3]3− complex anions with their non-binding (lone) electron pairs pointing into empty channels along [010].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call