Abstract
The implementation of computers in chemistry education since 1960 is described. Computers can be applied effectively to redress weaknesses in the basic scientific knowledge of students, as well as to augment their practical experience of chemical processes. Often the description or the explanation of chemical processes relies on mathematical and physical models that are three dimensional and dynamic and that can be presented elegantly with digitized images on computer. Current demands on lecturers and students, as well as didactic applications of computers in tertiary teaching are briefly described under the following headings: computer literacy, subject or task specific applications, computer aided testing, computer aided learning, interactive multimedia, the use of electronic media for lecture presentations, Internet, and mass education.
Highlights
The implementation o f computers in chemistry education since I960 is described
Die bekendste hiervan is die PLATO-projek wat deur die A m erikaanse regering befonds is en deur die Universiteit van Illinois bestuur is
Met 132 terminale het hulle onderrig aan 7000 universiteitstudente verskaf, asook aan 700 wiskunde- en wetenskapleerlinge wat betrokke was by die Universiteit se uitreikprogram
Summary
The implementation o f computers in chemistry education since I960 is described. Computers can be applied effectively to redress weaknesses in the basic scientific knowledge o f students, as well as to augment their practical experience o f chemical processes. Die eerste groep wat met die ontwikkeling van multimedia-pakkette vir chemie begin het, was by die Universiteit van Illinios gesetel en hulle bemark saam met ander opvoedkundiges ’n groot verskeidenheid sagteware op optiese skywe(CD-ROM) onderdie handelsnaam Falcon Software. Die kritiese vrae wat met die implementering van rekenaars vir onderrig gevra moet word, is: werk dit, hou die studente daarvan, leer die studente en regverdig dit die koste. Daar was belangrike verdere ontwikkelings in Suid-Afrika in verband met KIP vir die behandeling van die totale gesianidiseerde pulp, ’n Klein proefaanleg was in 1976 in werking, en teen 1978 ’n aanleg wat 250 t/d verwerk het. Die gelaaide koolstof wat tussen 200 en 20 000 g goud per ton bevat, word periodiek uit die eerste stap verwyder en met ’n bytsoda- of ’n bytsianiedoplosing geëlueer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.