Abstract
The data model developed on behalf of the Nursing Service Commission of the Canton of Zurich (Pflegedienstkommission des Kantons Zürich) is based on the NANDA nursing diagnoses, the Nursing Outcome Classification, and the Nursing Intervention Classification (NNN Classifications). It also includes integrated functions for cost-centered accounting, service recording, and the Swiss Nursing Minimum Data Set. The data model uses the NNN classifications to map a possible form of the nursing process in the electronic patient health record, where the nurse can choose nursing diagnoses, outcomes, and interventions relevant to the patient situation. The nurses' choice is guided both by the different classifications and their linkages, and the use of specific text components pre-defined for each classification and accessible through the respective linkages. This article describes the developed data model and illustrates its clinical application in a specific patient's situation. Preparatory work required for the implementation of NNN classifications in practical nursing such as content filtering and the creation of linkages between the NNN classifications are described. Against the background of documentation of the nursing process based on the DAPEP(1) data model, possible changes and requirements are deduced. The article provides a contribution to the discussion of a change in documentation of the nursing process by implementing nursing classifications in electronic patient records.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.