Abstract

Bcl-2 homologous antagonist/killer (BAK1) is a critical regulator of mitochondrial apoptosis. Although upregulation of BAK1 induces apoptosis has been established, the underlying molecular mechanism is far from clear. 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), an organic anion used as a blocker of anion exchangers and chloride channels, has been proved to rescue cell apoptosis both in vitro and in vivo. However, whether DIDS can inhibit BAK1-induced mitochondrial apoptosis remains undefined. Thus, this study aimed to explore whether DIDS could protect BAK1-induced apoptosis through GSK3β/β-catenin signaling pathway. The results showed overexpression BAK1 in 293T cells induced mitochondrial apoptosis accompanied by increasing the expression levels of cleaved caspase-9, -3, poly (ADP-ribose) polymerase (PARP) and reducing the MMP. Furthermore, overexpression BAK1 decreased the expression levels of Ser9-GSK3β and β-catenin. In addition, lithium chloride (LiCl), an activator of Wnt/β-catenin signaling pathway, markedly attenuated overexpression BAK1-induced mitochondrial apoptosis by restoring the expression levels of Ser9-GSK3β and β-catenin. Finally, DIDS absolutely abolished overexpression BAK1-mediated mitochondrial apoptosis through recovering the expression levels of Ser9-GSK3β and β-catenin. Taken together, our results reveal that DIDS blocks overexpression BAK1-induced mitochondrial apoptosis through GSK3β/β-catenin pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.