Abstract

We present a didactic derivation of the special theory of relativity in which Lorentz transformations are ‘discovered’ as symmetry transformations of the Klein–Gordon equation. The interpretation of Lorentz boosts as transformations to moving inertial reference frames is not assumed at the start, but it naturally appears at a later stage. The relative velocity v of two inertial reference frames is defined in terms of the elements of the pertinent Lorentz matrix, and the bound is presented as a simple theorem that follows from the structure of the Lorentz group. The polar decomposition of Lorentz matrices is used to explain noncommutativity and nonassociativity of the relativistic composition (‘addition’) of velocities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.