Abstract
We report on measurements of ionospheric plasma dynamics conducted at the Arecibo Observatory between 20:00 and 24:00 local time (LT) on December 25 and 26, 2004 using the 430 MHz incoherent scatter radar (ISR). For interpretive purposes these measurements are supported by data from two nearby ionosondes and Global Positioning System (GPS) satellites. The ISR detected different ionospheric behaviors during the vertical‐transmission periods on the consecutive, magnetically quiet nights. On the night of December 25 the ionosphere descended smoothly and spread F signatures faded. For about two hours on the following evening the bottomside ionosphere rose by ∼50 km, inducing plasma irregularities and intense spread F. Alternating cycles of bottom‐side plasma rising and falling persisted through the remainder of the experiments. We postulate that this sinusoidal behavior is a response to gravity waves propagating above Puerto Rico. Nearly simultaneous data from two nearby stations show that GPS signals were modified by variations in total electron content (TEC) indicating the presence of traveling ionospheric disturbances (TIDs). The December 26 experiments were conducted about a day after an MW = 9.2 earthquake launched tsunami waves first across the Indian, then into the Atlantic and Pacific Oceans. We suggest that coupling at the tsunami sea‐air interface launched gravity waves that propagated for great distances beneath the mesopause. GPS data recorded TEC variation in Asia, Europe, and the Caribbean, suggesting that TIDs were induced on a global scale at the wake of tsunami‐launched gravity waves. Energy from imperfectly ducted gravity waves leaked into the ionosphere, partially over Puerto Rico. The wind‐velocity field of these gravity waves caused local ionospheric plasma to rise, seeding bottomside irregularities via the generalized Rayleigh‐Taylor instability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.