Abstract
It is commonly believed that the efficiency of sediment flux from continents to oceans is maximized during relative sea level (RSL) lowstands by means of cross‐shelf valleys that are directly connected to the continental slope and deep marine environment. While such conditions have been documented for the last RSL lowstand along several continental margins, there is increasing evidence that radically different conditions persisted during the Last Glacial Maximum (LGM) elsewhere, with lowstand shorelines that remained on the continental shelf. Here we analyze the relationship between the LGM (21 ka) shoreline and the shelf edge for the Gulf of Mexico off the United States and the Bay of Biscay off France. A geophysical model is used to compute shoreline positions corrected for isostatic movements, and the shelf edge position is quantified by means of curvature. The conditions in the two study areas differed markedly: throughout the Gulf of Mexico study area, LGM sea level dropped to a point commonly ∼40 m below the shelf edge, consistent with conventional sequence stratigraphic models, while in the Bay of Biscay the modeled LGM shoreline remained well landward of the shelf edge, in places separated by hundreds of kilometers. These observations hint at potentially significant implications for (1) the source‐to‐sink sediment flux from continents to oceans and its variation in time and space, (2) sequence stratigraphic models that predict deep marine sedimentation as being particularly prominent during RSL lowstands, and (3) the occurrence of paleovalleys and related features on the continental shelf. In addition, our findings raise fundamental questions about the mechanics of shelf edge formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.