Abstract
Prior to the 7/9/1999 MS = 5.9 Athens earthquake, regional seismicity has exhibited a power-law increase, of the form �� = K +A(tc −t) n ,w hereis estimated using an expression log � = cM + d and tc is the time of the culminating event. Such changes appeared after the 17/8/1999 M7.4 Izmit event. We quantified the performance of the power law vs. the null hypothesis of constant seismic release rates, by defining the curvature C as the ratio of the power law fit RMS/linear fit RMS, so that the smaller C is, the better the power law behaviour. By mapping C, we have established a critical radius of 110 km and observed that the region of correlated accelerating seismic release extended from the N. Aegean, through Euboea and Attica to the SW Peloponnese. A few days prior to the Athens event, min(C) was centred at the epicentral area and numerical simulation yielded tc = 1999.676 and predicted MS = 5.77. Seismicity rates returned to normal (quasi-constant) after the Athens event. We interpret this effect as critical point behaviour, following remote excitation of a broad area by stress redistribution due to the Izmit event which, at Athens, has triggered 'premature' failure of a fault nearing its load bearing capacity. If this is correct, we have documented a case of remote earthquake triggering by another earthquake, as well as insight into the mechanisms produ- cing it. As a corollary, we note that a large event may beget another large event in its broader region of interaction, which may be preceded by characteristic precursory seismicity changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.