Abstract

Biologists have long theorized about the evolution of life cycles, meiosis, and sexual reproduction. We revisit these topics and propose that the fundamental difference between life cycles is where and when multicellularity is expressed. We develop a scenario to explain the evolutionary transition from the life cycle of a unicellular organism to one in which multicellularity is expressed in either the haploid or diploid phase, or both. We propose further that meiosis might have evolved as a mechanism to correct for spontaneous whole-genome duplication (auto-polyploidy) and thus before the evolution of sexual reproduction sensu stricto (i.e. the formation of a diploid zygote via the fusion of haploid gametes) in the major eukaryotic clades. In addition, we propose, as others have, that sexual reproduction, which predominates in all eukaryotic clades, has many different advantages among which is that it produces variability among offspring and thus reduces sibling competition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.