Abstract
We propose a model for bacterial Quorum Sensing based on an auxiliary electrostatic-like interaction originating from a fictitious electrical charge that represents bacteria activity. A cooperative mechanism for charge/activity exchange is introduced to implement chemotaxis and replication. The bacteria system is thus represented by means of a complex resistor network where link resistances take into account the allowed activity-flow among individuals. By explicit spatial stochastic simulations, we show that the model exhibits different quasi-realistic behaviors from colony formation to biofilm aggregation. The electrical signal associated with Quorum Sensing is analyzed in space and time and provides useful information about the colony dynamics. In particular, we analyze the transition between the planktonic and colony phases as the intensity of Quorum Sensing is varied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.