Abstract

DNA sequences that can form G-quadruplexes (G4s) are highly prevalent in the genome. However, the structures and functions of most G4-forming sequences in the genome are poorly understood. Therefore, the development of molecular probes for G4 recognition in biological samples, especially probes with long wavelength, are important for the basic research of G4s. Squaraines dyes exhibit sharp and intense absorption and strong emission in the red to NIR region, but very few of them have been reported as probes for the recognition of nucleic acids. Here we report the interactions of two squaraine dyes, STS and CSTS, with different kinds of DNA. The dicyanomethylene-functionalized squaraine dye, CSTS, exhibits strong interaction with the parallel G4s, but no interaction with other DNA. In aqueous conditions, this interaction causes the transformation of CSTS from H-aggregates to monomers, which results in decline and growth of the absorption spectra of both forms. The parallel G4s enhance the fluorescence of both STS and CSTS, but the fluorescence enhancement of CSTS is much higher than that of STS. CSTS is demonstrated to bind to G4s through end-stacking model on G-quartet surface. The high selectivity of CSTS to parallel G4s is attributed to its V-shaped rigid planar π scaffold. The high selectivity, very low background fluorescence, large absorption coefficient, and high fluorescence quantum yield make CSTS hold great promise as a long-wavelength probe for parallel G4 detection in biological samples or in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.