Abstract
Wild-type Dictyostelium discoideum cells growing on non-toxic levels of nickel chloride or cobaltous chloride accumulate 2-3.5 times as much nickel and at least 1.5 times as much cobalt as cobB mutants. The cobB trait is dominant, confers unstable cobalt and nickel resistance and is correlated with the presence of up to 50 copies of a linear extrachromosomal DNA, approximately 100 kb in length, derived from linkage group III. Independent cobB mutants can be obtained by selection on medium containing either cobalt or nickel. The amplified DNA can be transferred to wild-type strains by electroporation. Strains with mutations at a second cobalt resistance locus, cobA, accumulate the same amount of cobalt, but more nickel than wild-type strains. Our results are consistent with the cobA mutant phenotype being due to internal sequestration of cobalt, and the cobB mutant phenotype being due to reduced net uptake of cobalt and nickel. Energy-dependent nickel export was detectable in wild-type and cobB mutant strains but its role in heavy metal resistance has not yet been proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.