Abstract
The \({{\ell }_{1/2}}\)-regularizer has been studied widely in compressed sensing, but there have been few studies about dictionary learning problems. The dictionary learning method with the \({{\ell }_{1/2}}\)-regularizer aims to learn a dictionary, which requires solving a very challenging nonconvex and nonsmooth optimization problem. In addition, the low mutual coherence of a dictionary is an important property that ensures the optimality of the sparse representation in the dictionary. In this paper, we address a dictionary learning problem involving the \({{\ell }_{1/2}}\)-regularizer and the coherence penalty, which is difficult to solve quickly and efficiently. We employ a decomposition scheme and an alternating optimization, which transforms the overall problem into a set of minimizations of single-vector-variable subproblems. Although the subproblems are nonsmooth and even nonconvex, we propose the use of proximal operator technology to conquer them, which leads to a rapid and efficient dictionary learning algorithm. In a theoretical analysis, we establish the algorithm’s global convergence. Experiments were performed for dictionary learning using both synthetic data and real-world data. For the synthetic data, we demonstrated that our algorithm performed better than state-of-the-art algorithms. Using real-world data, the learned dictionaries were shown to be more efficient than algorithms using \({{\ell }_{1}}\)-norm for sparsity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Learning and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.