Abstract

Dictionary learning and sparse coding have been widely studied as mechanisms for unsupervised feature learning. Unsupervised learning could bring enormous benefit to the processing of hyperspectral images and to other remote sensing data analysis because labelled data are often scarce in this field. We propose a method for clustering the pixels of hyperspectral images using sparse coefficients computed from a representative dictionary as features. We show empirically that the proposed method works more effectively than clustering on the original pixels. We also demonstrate that our approach, in certain circumstances, outperforms the clustering results of features extracted using principal component analysis and non-negative matrix factorisation. Furthermore, our method is suitable for applications in repetitively clustering an ever-growing amount of high-dimensional data, which is the case when working with hyperspectral satellite imagery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.