Abstract

The potential huge advantage of spectral computed tomography (CT) is that it can provide accurate material identification and quantitative tissue information by material decomposition. However, material decomposition is a typical inverse problem, where the noise can be magnified. To address this issue, we develop a dictionary learning based image-domain material decomposition (DLIMD) method for spectral CT to achieve accurate material components with better image quality. Specifically, a set of image patches are extracted from the mode-1 unfolding of normalized material images decomposed by direct inversion to train a unified dictionary using the K-SVD technique. Then, the DLIMD model is established to explore the redundant similarities of the material images, where the split-Bregman is employed to optimize the model. Finally, more constraints (i.e. volume conservation and the bounds of each pixel within material maps) are integrated into the DLIMD model. Numerical phantom, physical phantom and preclinical experiments are performed to evaluate the performance of the proposed DLIMD in material decomposition accuracy, material image edge preservation and feature recovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.