Abstract
The JBIG2 standard for lossy and lossless bilevel image coding is a very flexible encoding strategy based on pattern matching techniques. This paper addresses the problem of compressing text images with JBIG2. For text image compression, JBIG2 allows two encoding strategies: SPM and PM&S. We compare in detail the lossless and lossy coding performance using the SPM-based and PM&S-based JBIG2, including their coding efficiency, reconstructed image quality and system complexity. For the SPM-based JBIG2, we discuss the bit rate tradeoff associated with symbol dictionary design. We propose two symbol dictionary design techniques: the class-based and tree-based techniques. Experiments show that the SPM-based JBIG2 is a more efficient lossless system, leading to 8% higher compression ratios on average. It also provides better control over the reconstructed image quality in lossy compression. However, SPM's advantages come at the price of higher encoder complexity. The proposed class-based and tree-based symbol dictionary designs outperform simpler dictionary formation techniques by 8% for lossless and 16-18% for lossy compression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.