Abstract

Multi-view learning can improve classification performance by combining information between different views. Due to the similarity in different views of the dataset, sometimes the features obtained are highly limited and redundant. At the same time, different views accumulate a large amount of noisy information, which will affect the classification performance of the model. To solve these problems, we embed privileged information in the model and introduce dictionary learning, and proposed a new dictionary-based multi-view learning method with privileged information (MVDL-PI). First, two sets of dictionaries (synthetic dictionary and analysis dictionary) and sparse representation matrices of different information domains are obtained for each view information and privilege information through dictionary learning. Then, we obtain consistency information from the regularization terms of the two different sets of synthetic dictionaries and construct a LUPI (Learning using privileged information) classifier by the sparse representation. In addition, we use alternating convex optimization and Lagrange multiplier methods to optimize the model and prove its convergence. In the experiment, we did a number of experiments comparing this method with similar recent methods. The experimental results show that the MVDL-PI method is superior to other methods in terms of stability and classification accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.