Abstract

Incorporating adaptive and dynamic behavior in a catalytic system is the foremost prerequisite to gain nature-like complex functionality in a synthetic chemical network. Herein, we report a self-assembled modular catalytic system based on the multivalent interaction between a cationic gold nanoparticle surface and nucleotides. It is shown that the catalytic preference and activity of the nanoparticle can be directed in a controllable manner toward either hydrazone formation or a proton transfer reaction only by creating a differential local microenvironment around the nanoparticle surface, simply by changing or converting the multivalent scaffold around it. The temporal control of the system in governing the reaction preference and catalytic activity will enable designing a system of higher complexity with a preprogrammed reaction networking property.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.